Solving problems by searching
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W Example: The 8-puzzle

7 2 4 1 2
S 6 3 4 S
8 3 1 6 7 8

= states?

= actions?

= goal test?
= path cost?




m Example: The 8-puzzle

7 2 4 1 2
S 6 3 4 S
8 3 1 6 7 8

Start State Goal State

states? locations of tiles

actions? move blank left, right, up, down
goal test? = goal state (given)

path cost? 1 per move




m Example: robotic assembly

— )

states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

actions?: continuous motions of robot joints
goal test?: complete assembly
path cost?: time to execute




m Tree search algorithms

Basic idea:

offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree




- Tree search example




@ Tree search example
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W Tree search example




Implementation: general tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe +— INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE-FRONT( fringe)
if GoAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function ExXPAND( node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
$4—a new NODE
PARENT-NODE[s] < node; ACTION[s] «— action; STATE[s] <+ result
PATH-COST[$] ¢~ PATH-COST[node] + STEP-COST(n0ode, action, s)
DePTH[s] - DEPTH[nOde] + 1
add s to successors

return successors
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Implementation: states vs. nodes

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

parent, action
A

State || 5

4 Node depth =6
g=6
6 |ll 11!l s
- ate
7 1l 3 ||l 2 st

The Expand function creates new nodes, filling in the

various fields anc

using the SuccessorFn of the problem

to create the corresponding states.
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mp Search strategies

A search strategy is defined by picking the order of node
expansion
Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution

m: maximum depth of the state space (may be o)

12



m Uninformed search strategies

Jninformed search strategies use only the
information available in the problem
definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
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mp Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is » FTFO anelia_i @ new <1iccessors go
at end >
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mp Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end ﬂ
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mp Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queug, i.e., new successors go

at end ﬂ
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mp Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end 'E"




QNN Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+... +bd + b(bd-1) = O(bd+1)
Space? O(bd+1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

18



n Uniform-cost search

Expand least-cost unexpanded node

Implementation:
fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost > €

Time? # of nodes with g < cost of optimal solution,
O(bceiling(C*/ €)) where C* is the cost of the optimal

solution

Space? # of nodes with g < cost of optimal solution,
O(bceiling(C*/ €))

Optimal? Yes — nodes expanded in increasing order of g(n)

19



mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

2©.
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

A,
40 (5
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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m Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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m Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

G
p(F) )
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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mp Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front
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QN Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces
with loops

Modify to avoid repeated states along path
- complete in finite spaces

Time? O(bm): terrible if mis much larger than d

but if solutions are dense, may be much faster than
breadth-first

Space? O(bm), i.e., linear space!
Optimal? No
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i Depth-limited search

= depth-first search with depth limit /,
l.e., nodes at depth /have no successors

= Recursive implementation:

function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result +— RECURSIVE- DLS( successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure
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g Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH( problem, depth)
if resulf +# cutoff then return resull
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QNNN [terative deepening search /=0
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mp [terative deepening search /=1
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mp lterative deepening search /=2
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mp lterative deepening search /=3
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mp Iterative deepening search

Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b0 + b1 + b2 + ... + bd-2 + bd-1 + bd

Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b1 + (ldb-c})b’\z + ... + 3bd-2 +2bd-1 +

For b = 10, d = 5,
NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%



™ properties of iterative

CofRERENING search

Time? (d+1)b0 + d b1 + (d-1)b2 + ... + bd
= O(bd)

Space? O(bd)

Optimal? Yes, if step cost = 1
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# Summary of algorithms

Criterion Breadth-  Uniform- Depth-  Depth- lterative
First Cost First Limited  Deepening
Complete? Yes Yes No No Yes
Time O(b*) OBy O@™) o) O(b?)
Space oY) oIy O(m)  O(bl) O(bd)
Optimal? Yes Yes No No Yes

41



Uninformed Search Techniques
BFS and DFS



Uninformed Search

Breadth First Search
Uniform Cost Search
Depth First Search
Depth Limited Search

[terative deepening Depth First Search

Bidirectional Search



Breadth First Search

Breadth first search
Let fringe be a list contaiming the mitial state
Loop
if fringe 15 empty return failure
Node € remove-first (fringe)
if Node 15 a goal
then return the path from mmitial state to Node
else generate all successors of Node, and
(merge the newly generated nodes into fringe)
add generated nodes to the back of fringe

End Loop



Concept

Step 1: Traverse the root node
Step 2: Traverse all neighbours of root node.
Step 3: Traverse all neighbours of neighbours of the root node.

Step 4: This process will continue until we are getting the goal node.



Step 1: Imitially fninge contamns only one node corresponding to the source state A

FRINGE: A



Step 2: A 15 removed from fringe. The node 1s expanded. and its children B and C are
generated. They are placed at the back of fringe.

FRINGE: B C




Step 3: Node B 15 removed from fringe and 15 expanded. Its chaldren D, E are generated
and put at the back of fringe.

FRINGE:CDE




Step 4: Node C 1s removed from fringe and 15 expanded. Its children D and G are added
to the back of fringe.

FRINGE:DEDG




Step 5: Node D 1s removed from fringe. Its children C and F are generated and addEH to
the back of fringe.

FRINGE:EDGCF




Step 6. Node E 15 removed from fringe. It has no children.

FRINGE- D G CF

FRINGE: GCF BF |
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Step 8: G 1s selected for expansion. It is found to be a goal node. So the
algorithm returns the path A C G by following the parent pointers of the node
corresponding to G. The algorithm terminates.
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Properties of BFS

Complete.

The algorithm is optimal (i.e., admissible) if all operators have the same
cost. Otherwise, breadth first search finds a solution with the shortest path
length.

The algorithm has exponential time and space complexity. Suppose the
search tree can be modelled as a b-ary tree as shown in Figure 3. Then the
time and space complexity of the algorithm i1s O(bd+1) where d is the
depth of the solution and b is the branching factor (i.e., number of
children) at each node.
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Advantages

In this procedure at any way it
will find the goal.

It does not follow a single
unfruitful path for a long time.

It finds the minimal solution in
case of multiple paths.

Disadvantages

BFS consumes large memory
space.

Its time complexity is more.

It has long pathways, when all

paths to a destination are on
approximately the same search
depth.
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Depth First Search

Depth First Search
Let fringe be a list contaiming the mmitial state
Loop
1f fringe 15 empty return
Node € remove-first (fringe)
if Node 15 a goal
then return the path from initial state to Node

else generate all successors of Node, and
merge the newly generated nodes into fringe

add generated nodes to the front of firinge

End Loop

14
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Concept

Step 1: Traverse the root node.
Step 2: Traverse any neighbour of the root node.
Step 3: Traverse any neighbour of neighbour of the root node.

Step 4: This process will continue until we are getting the goal node.
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Step 1: Initially fringe contains only the node for A
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Step 2: A 1s removed from fringe. A 1s expanded and 1ts children B and C are put 1n front

of fringe.

FRINGE: B C
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Step 3: Node B 15 removed from fringe. and its children D and E are pushed in front of
fringe.
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Step 4: Node D 1s removed from fringe. C and F are pushed in front of fringe

FRINGE:CFEC
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Step 3: Node C 15 removed from fringe. Its child G 1s pushed n front of fringe.
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Step 6: Node G 1s expanded and found to be a goal node. The solution path A-
B-D-C-G 1s returned and the algorithm terminates.

FRINGE:GFEC
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Properties of DFS

The algorithm takes exponential time. If N is the maximum depth of a node
in the search space, in the worst case the algorithm will take time O(bd).
However the space taken is linear in the depth of the search tree, O(bN).

Note that the time taken by the algorithm is related to the maximum depth
of the search tree. If the search tree has infinite depth, the algorithm may
not terminate. This can happen if the search space is infinite. It can also
happen if the search space contains cycles. The latter case can be handled
by checking for cycles in the algorithm. Thus Depth First Search is not
complete.
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Advantages:

DFS consumes very less
memory space.

It will reach at the goal node in
a less time period than BFS if it
traverses 1n a right path.

It may find a solution without
examining much of search
because we may get the desired
solution

in the very first go.

Disadvantages:

It 1s possible that may states
keep reoccurring.

There 1s no guarantee of
finding the goal node.

Sometimes the states may also
enter into infinite loops.
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Difference between BFS and

BFS

It uses the data structure
queue.

BFS is complete because it
finds the solution 1if one
exists.

BFS takes more space i.e.
equivalent to O(bd+1) where
b 1s the maximum breath exist
in a search

tree and d 1s the maximum
depth exit in a search tree.

In case of several goals, it
finds the best one.

DFES

It uses the data structure
stack.

It is not complete because it
may take infinite loop to
reach at the goal node.

The space complexity 1s O
(d).

In case of several goals, it
will terminate the solution in
any order.
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Uniform Cost Search

This algorithm 1s by Dijkstra [1959]. The algorithm expands nodes in the
order of their cost from the source.

In uniform cost search the newly generated nodes are put in OPEN
according to their path costs. This ensures that when a node 1s selected for
expansion it is a node with the cheapest cost among the nodes in OPEN.

Let g(n) = cost of the path from the start node to the current node n. Sort
nodes by increasing value of g.

25



Algorithm- Uniform Cost Search

Initialize: set OPEN=s, CLOSED={} and c(s)=0
Fail: If OPEN={}, terminate with failure

Select: Select a state with the minimum cost ,n, from OPEN and save in
CLOSED

Terminate: If n€G, terminate with success
Expand: generate the successor of n
For each successor, m, :
If me[OPENUCLOSED]
set C(m)= C(n)+C(n,m) and insert m in OPEN
If me[OPENUCLOSED]
Set C(m)= min{ C(m),C(n)+C(n,m)} 26



Properties of UCS

Some properties of this search algorithm are:
» Complete
» Optimal/Admissible

» Exponential time and space complexity, O(bd)

27



Uninformed
Search




Building Goal-Based Agents

* We have a goal to reach

= Driving from point A to point B

- Put 8 queens on a chess board such that no one attacks another
- Prove that John 1s an ancestor of Mary

* We have information about the current state, where we are
now at the beginning and after each action

* We have a set of actions we can take to move around
(change from where we are) i1f the preconditions are met

* Objective: find a sequence of legal actions which will bring
us from the start point to a goal



What is the goal to be achieved?

* Could describe a situation we want to achieve, a set of
properties that we want to hold, etc.

* Requires defining a “goal test” so that we know what it
means to have achieved/satisfied our goal.

* This 1s a hard part that is rarely tackled in Al, usually
assuming that the system designer or user will specify the
goal to be achieved.



What are the actions?

* Quantify all of the primitive actions or events that are
sufficient to describe all necessary changes in solving a
task/goal.

* No uncertainty associated with what an action does to the
world. That 1s, given an action (aka operator or move) and a
description of the current state of the world, the action
completely specifies

- Precondition: 1f that action CAN be applied to the
current world (1.e., 1s 1t applicable and legal), and

- Effect: what the exact state of the world will be after the
action 1s performed in the current world (i.e., no need
for "history" information to be able to compute what the
new world looks like).



Actions

* Note also that actions can all be considered as discrete events
that can be thought of as occurring at an instant of time.

— That 1s, the world 1s in one situation, then an action occurs and
the world 1s now 1n a new situation. For example, if "Mary 1s in
class" and then performs the action "go home," then in the next
situation she 1s "at home." There 1s no representation of a point in

time where she 1s neither in class nor at home (1.€., in the state of
"going home").

* The number of operators needed depends on the
representation used in describing a state.
' Actions often are associated with costs



Representing states

At any moment, the relevant world is represented as a state
- Initial (start) state: S

- An action (or an operation) changes the current state to
another state (if it 1s applied): state transition

- An action can be taken (applicable) only if the its
precondition is met by the current state

- For a given state, there might be more than one applicable
actions

- Goal state: a state satisfies the goal description or passes the
goal test

- Dead-end state: a non-goal state to which no action is
applicable



Representing states

- Stat space:

- Includes the 1nitial state S and all other states that are
reachable from S by a sequence of actions

- A state space can be organized as a graph:
nodes: states in the space

arcs: actions/operations

* The size of a problem 1s usually described in terms of the
number of states (or the size of the state space) that are possible.

- Tic-Tac-Toe has about 379 states.

- Checkers has about 10740 states.

- Rubik's Cube has about 10”19 states.

— Chess has about 107120 states in a typical game.
- GO has more states than Chess



Closed World Assumption

* We will generally use the Closed World
Assumption.

* All necessary information about a problem domain
1s available 1n each percept so that each state 1s a
complete description of the world.

* There 1s no incomplete information at any point in
time.



Some example problems

* Toy problems and micro-worlds
- 8-Puzzle
- Missionaries and Cannibals
- Cryptarithmetic
- Remove 5 Sticks
- Traveling Salesman Problem (TSP)

* Real-world-problems



8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3 x
3 board, move the tiles in such a way so as to produce a
desired goal configuration of the tiles.

5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5

Start State Goal State



8 puzzle

* State: 3 x 3 array configuration of the tiles on the board.
* Operators: Move Blank square Left, Right, Up or Down.

- This is a more efficient encoding of the operators than one in which
each of four possible moves for each of the 8 distinct tiles is used.

- Initial State: A particular configuration of the board.
* Goal: A particular configuration of the board.
* The state space 1s partitioned into two subspaces

* NP-complete problem, need to examine O(27k) states
where k 1s the length of the solution path.

* 15-puzzle problems (4 x 4 grid with 15 numbered tiles), and
N-puzzles (N =n"2-1)



A portion of the state space of a 8-Puzzle problem

)
J
9
N




The 8-Queens Problem

Place eight queens on a
chessboard such that no
queen attacks any other!

Total # of states: 4.4x1079
Total # of solutions:
12 (or 96)




Missionaries and Cannibals

There are 3 missionaries, 3 cannibals,
and 1 boat that can carry up to two

people on one side of a river. Vissionaiy1
Goal: Move all the missionaries and Vieonays
cannibals across the river. N
Constraint: Missionaries can never be Cammieats

outnumbered by cannibals on either side

of river, or else the missionaries are
killed.

State: configuration of missionaries and
cannibals and boat on each side of river.

Operators: Move boat containing 1 or 2
occupants across the river (in either
direction) to the other side.

3 Missionaries and 3 Cannibals wish to cross
the river. They hawe a boat that will carry two
people. Everyone can navigatethe boat. If at
any time the Cannibals cuthumber the
missionaries on either bank of the river, they
will eatthe Missionaries. Find the smallest
nurnber of crossings that will allow everyone
to cross the river safely.

The problem can be solved in 11 moves. But
people rarely getthe optimal solution,
because the MC problem contains a 'tricky’
state atthe end. where two people mowe
back across the river,



Missionaries and Cannibals Solution

Near side Far side

O Initial setup: MVMCCC B -
Two canni bals cross over: MVMC B CC
One cones back: MVMCC
Two canni bal s go over again: MVM
One cones back: MVMC B CC

MC

VMCC

CC

CCC

C

CC

Two m ssionaries cross:

A m ssionary & canni bal return:
Two m ssionaries cross again:
A canni bal returns:

Two canni bal s cross:

10 One returns:

11 And brings over the third:

© 0N O Ol D WODN B



Cryptarithmetic

* Find an assignment of digits (0, ..., 9) to letters so that a

given arithmetic expression 1s true. examples: SEND +
MORE = MONEY and

FORTY Sol ution: 29786
+ TEN 850
+ TEN 850

SI XTY 31486

* Note: In this problem, the solution 1s NOT a sequence of
actions that transforms the 1nitial state into the goal state,
but rather the solution i1s simply finding a goal node that

includes an assignment of digits to each of the distinct
lettere 11 the given nrohlem



Remove 5 Sticks

* Given the following
configuration of sticks,
remove exactly 5 sticks in
such a way that the
remaining configuration
forms exactly 3 squares.



Traveling Salesman Problem

* (Given a road map of n cities, find the shortest tour which
visits every city on the map exactly once and then return to
the original city (Hamiltonian circuit)

' (Geometric version):

- a complete graph of n vertices.

- n!/2n legal tours

- Find one legal tour that 1s shortest



Formalizing Search in a State Space

A state space is a graph, (V, E) where V is a set of nodes and
E 1s a set of arcs, where each arc is directed from a node to
another node
node: corresponds to a state

- state description

- plus optionally other information related to the parent of the
node, operation to generate the node from that parent, and other
bookkeeping data)

arc: corresponds to an applicable action/operation.

- the source and destination nodes are called as parent
(immediate predecessor) and child (immediate successor)
nodes with respect to each other

- ancestors( (predecessors) and descendents (successors)

- each arc has a fixed, non-negative cost associated with it,
corresponding to the cost of the action



node generation: making explicit a node by applying
an action to another node which has been made explicit
node expansion: generating all children of an explicit
node by applying all applicable operations to that node
One or more nodes are designated as start nodes

A goal test predicate 1s applied to a node to determine 1f 1ts
associated state 1s a goal state

A solution is a sequence of operations that 1s associated
with a path in a state space from a start node to a goal node

The cost of a solution 1s the sum of the arc costs on the
solution path



' State-space search is the process of searching through a
state space for a solution by making explicit a sufficient

portion of an 1mplicit state-space graph to include a goal
node.

- Hence, initially V={S}, where S is the start node; when S is
expanded, its successors are generated and those nodes are
added to V and the associated arcs are added to E. This
process continues until a goal node is generated (included in
V) and 1dentified (by goal test)

* During search, a node can be in one of the three
categories:

- Not generated yet (has not been made explicit yet)

- OPEN: generated but not expanded

- CLOSED: expanded

- Search strategies differ mainly on how to select an OPEN
node for expansion at each step of search



A General State-Space Search Algorithm

" Node n

- state description
- parent (may use a backpointer) (if needed)
- Operator used to generate n (optional)

- Depth of n (optional)
- Path cost from S to n (if available)
* OPEN list

- initialization: {S}
- node insertion/removal depends on specific search strategy

* CLOSED list
- initialization: {}

- organized by backpointers



A General State-Space Search Algorithm

open := {S}; closed :={};
repeat
n := select(open); /* select one node from open for expansion */
if n is a goal
then exit with success; /* delayed goal testing */
expand(n)
/* generate all children of n
put these newly generated nodes in open (check duplicates)
put n in closed (check duplicates) */
until open = {};

exit with failure



Some Issues

* Search process constructs a search tree, where
- root 1s the 1nitial state S, and

- leaf nodes are nodes

* not yet been expanded (i.e., they are in OPEN list) or

* having no successors (i.e., they're "deadends")
* Search tree may be infinite because of loops even if state
space 1s small
* Search strategies mainly differ on select(open)
* Each node represents a partial solution path (and cost of the
partial solution path) from the start node to the given node.

- 1n general, from this node there are many possible paths (and
therefore solutions) that have this partial path as a prefix.



Evaluating Search Strategies

- Completeness

- Guarantees finding a solution whenever one exists

* Time Complexity

- How long (worst or average case) does it take to find a solution?
Usually measured in terms of the number of nodes expanded

© Space Complexity

- How much space is used by the algorithm? Usually measured in
terms of the maximum size that the “OPEN" list becomes during
the search

* Optimality/Admissibility

- If a solution is found, is it guaranteed to be an optimal one? For
example, 1s it the one with minimum cost?



Uninformed vs. Informed Search

- Uninformed Search Strategies

- Breadth-First search

- Depth-First search

— Uniform-Cost search

- Depth-First Iterative Deepening search

* Informed Search Strategies
- Hill climbing

- Best-first search

- Greedy Search

- Beam search

- Algorithm A

- Algorithm A*



Breadth-First

* Algorithm outline:

- Always select from the OPEN the node with the smallest depth for
expansion, and put all newly generated nodes into OPEN

- OPEN is organized as FIFO (first-in, first-out) list, i.e., a queue.
- Terminate if a node selected for expansion is a goal

* Properties
- Complete

- Optimal (i.e., admissible) if all operators have the same cost.
Otherwise, not optimal but finds solution with shortest path length
(shallowest solution).

- Exponential time and space complexity,
O(b”d) nodes will be generated, where

d is the depth of the solution and

b 1s the branching factor (1.e., number of children) at each node



Breadth-First

- A complete search tree of depth
d where each non-leaf node has
b children, has a total of 1 +b +
b2 + ...+ brd = (bN(d+1) - 1)/ 2
(b-1) nodes

- Time complexity (# of nodes
generated): O(b”d)

- Space complexity (maximum
length of OPEN): O(b”d) o

1_

a

- For a complete search tree of depth 12, where every node at depths
0, ..., 11 has 10 children and every node at depth 12 has 0 children,
there are 1 + 10 + 100 + 1000 + ... + 10012 = (1013 - 1)/9 =
O(10712) nodes in the complete search tree.

* BFS i1s suitable for problems with shallow solutions



Example Illustrating Uninformed Search Strategies



Breadth-First Search

exp. node OPEN list CLOSED list
1S} U

S {ABC} {S}
A {BCDEG} {SA}
B {CDEGG'} {SAB}
C {DEGG'G"} {SABC}
D {EGG'G"} {SABC D}
E {GG' G"} {SABCDE}
G {G'G"} {SABCDE}

Solution path found is S A G <-- this G also has cost 10
Number of nodes expanded (including goal node) =7



CLOSED List: the search tree connected by backpointers

/58
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Depth-First (DFS)

* Algorithm outline:
- Always select from the OPEN the node with the &

greatest depth for expansion, and put all newly

generated nodes into OPEN
— OPEN 1s organized as LIFO (last-in, first-out) list. &

- Terminate 1f a node selected for expansion is a goal

* May not terminate without a "depth bound," i.e., cutting off search below a fixed depth D
(How to determine the depth bound?)

* Not complete (with or without cycle detection, and with or without a cutoff depth)
* Exponential time, O(b"d), but only linear space, O(bd), required
Can find deep solutions quickly if lucky

* When search hits a deadend, can only back up one level at a time even if the "problem"
occurs because of a bad operator choice near the top of the tree. Hence, only does
"chronological backtracking"



Depth-First Search
return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT)

exp. node OPEN list CLOSED list
1S}
S {ABC}
A {DEGBC} )’ 5 N8
D {EGBC} (a) @
E {GBC) /7 .
G {BC} @ (k) @

Solution path found is S A G <-- this G has cost 10
Number of nodes expanded (including goal node) =5



Uniform-Cost (UCS)

* Let g(n) = cost of the path from the start node to an open node n

* Algorithm outline:

- Always select from the OPEN the node with the least g(.) value
for expansion, and put all newly generated nodes into OPEN

- Nodes in OPEN are sorted by their g(.) values (in ascending order)
- Terminate 1f a node selected for expansion 1s a goal
 Called “Dijkstra's Algorithm” 1n the algorithms literature and

similar to “Branch and Bound Algorithm” 1in operations
research literature



Uniform-Cost Search

GENERAL-SEARCH(problem, ENQUEUE-BY-PATH-COST)

exp. node nodes list CLOSED list
13(0)}
S {A(1) B(5) C(8);
A {D(4) B(5) C(8) E(8) G(10);

1 K
D {B(5)C(8)E(®8) G(10)} /
B {C(8)E(8) G’(9) G(10)} %IN C‘%
C  {E(8) G’(9) G(10) G”(13)} ’ 4 \s
E ® ® © @©®©e

1G°(9) G(10) G*(13) §
G {G(10) G*(13) }
Solution path found 1s S B G <-- this G has cost 9, not 10
Number of nodes expanded (including goal node) =7



Uniform-Cost (UCS)

* Complete (if cost of each action 1s not infinitesimal)
- The total # of nodes n with g(n) <= g(goal) in the state space is finite
- If n’ 1s a child of n, then g(n’) = g(n) + c(n, n’) > g(n)
- Goal node will eventually be generated (put in OPEN) and selected for
expansion (and passes the goal test)

* Optimal/Admissible

- Admissibility depends on the goal test being applied when a node is
removed from the OPEN list, not when it's parent node is expanded and
the node is first generated (delayed goal testing)

- Multiple solution paths (following different backpointers)

- Each solution path that can be generated from an open node n will have
its path cost >= g(n)

- When the first goal node is selected for expansion (and passes the goal

test), its path cost is less than or equal to g(n) of every OPEN node n (and
solutions entailed by n)

- Exponential time and space complexity,
- worst case: becomes BFS when all arcs cost the same



Depth-First Iterative Deepening (DFID)

* BF and DF both have exponential time complexity O(b”d)

BF is complete but has exponential space complexity (conservative)

DF has linear space complexity but 1s incomplete (radical)

* Space 1s often a harder resource constraint than time

 Can we have an algorithm that
- Is complete
- Has linear space complexity, and
- Has time complexity of O(b”d)

* DFID by Korf'in 1985 (17 years after A*)
First do DFS to depth 0 (i.e., treat start node as

having no successors), then, if no solution found,

do DFS to depth 1, etc. A A A

until solution found do / \

DFES with depth bound c

1



Depth-First Iterative Deepening (DFID)

* Complete (iteratively generate all nodes up to depth d)

* Optimal/Admissible 1f all operators have the same cost.
Otherwise, not optimal but does guarantee finding solution
of shortest length (like BF).

* Linear space complexity: O(bd), (like DF)

* Time complexity is a little worse than BFS or DFS because
nodes near the top of the search tree are generated multiple
times, but because almost all of the nodes are near the

bottom of a tree, the worst case time complexity 1s still
exponential, O(b”d)



Depth-First Iterative Deepening

* If branching factor 1s b and solution 1s at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are
generated twice, etc., and node at depth 1 1s generated d
times.

Hence

total(d) = bd + 2b7(d-1) + ... + db
<=brd /(1 - 1/b)*2 = O(b d).

- If b=4, then worst case 1s 1.78 * 4°d, 1.e., 78% more nodes
searched than exist at depth d (in the worst case).



tota(d) =10 +2 B +L +(d -1) B* +d
=p’A+2B" +L +(d -1) B +d B™)

Letx=b"", then

tota(d) = bd(1+2 @' +L +(d -1) @7 +d @)

—bd-(x+x +L +x7 +x9)
—bd d ix x* i

de-- /*x?"" <<1 when d is large since 1/b <1%*/

= b w Therefore

(1-x)
tota(d) < b* /(1-x)* =b* /(1 -b"")?



Bi-directional search

G\# W
Eione ¢

* Alternate searching from the start state toward the goal and
from the goal state toward the start.

* Stop when the frontiers intersect.

* Works well only when there are unique start and goal states
and when actions are reversible

* Can lead to finding a solution more quickly (but watch out
for pathological situations).



Comparing Search Strategies

o Breadth-  Uniform-  Depth- Depth- lterative Bidirectional
riteon First Cost First Limited Deepening  (if applicable)
Time b b b" b b b
Space [ K bm bl bd B
Optimal? Yes Yes No No Yes Yes
Complete”? Yes Yes No Yes, if[ > d Yes Yes




When to use what

* Depth-First Search:

- Many solutions exist
- Know (or have a good estimate of) the depth of solution

* Breadth-First Search:

- Some solutions are known to be shallow

* Uniform-Cost Search:
- Actions have varying costs

- Least cost solution is required
This is the only uninformed search that worries about costs.

- Iterative-Deepening Search:
— Space is limited and the shortest solution path is required



Uninformed Search
Depth Limited and Iterative
Deepening Search



Depth Limited Search

A variation of Depth First Search circumvents the above problem by keeping a
depth bound.

Nodes are only expanded if they have depth less than the bound. This algorithm
1s known as depth-limited search.

Depth linuted search (linut)
Let fringe be a list containing the imitial state
Loop

if fringe 1= empty return fatlure

Node < remove-first (fringe)

1if Node 15 a goal
then return the path from initial state to Node
else if depth of Node = limat return cutoff

else add generated nodes to the front of fringe
End Loop




Depth First Iterative deepening
Search (DFID)

First do DFS to depth O (1.e., treat start node as having no
successors), then, if no solution found, do DFS to depth 1, etc.

DFID
until solution found do

DFS with depth cutoff c

c=ct+l
Dt bl | Lriipathi baiignd = 2 Ldizpnh bsoiiind 3 Lhzpila boaipd = 4
3



lterative deepening search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result +— DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result




lterative deepening search [ =0




lterative deepening search [ =1

imit = 1 o)
@ © ./@\»@J 0/‘\.




lterative deepening search [ =2

e
S




Iterative deepening search [ =3

)
(00 0 5
(0 7 o




lterative deepening search

Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b0 + bl + b2 + ... + bd-2 + bd-1 + bd

Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d bl + (dt;é)bz + ... + 3bd-2 +2bd-1 +
1

Forb=10,d =5,
- NDLS=1+10+ 100 + 1,000 + 10,000 + 100,000 = 111,111
- NIDS =6 + 50 + 400 + 3,000 + 20,000 + 100’008 = 123,456



Properties of iterative

| Complete?qlggpenmg search

- Time? (d+1)b0 + d b1 + (d-1)b2 + ... + bd
= O(bd)

- Space? O(bd)
- Optimal? Yes, If step cost =1

10



Comparing Uninformed Search
Strategy

Criter Breadth- Uniform- Depth- Depth- [terative Bidirectional
eren First Cost First Limited  Deepening  (if applicable)
Complete? Yes”® Yes®b No No Yes® Yes®:d
Time O(b9)  OBWIE/)  opm) O Ok O(bi/2)
Space o) Oy Obm)  Ofbe) O(bd) O(b4/2)
Optimal? Yes© Yes No No Yes® Yeage:d

11




M Searching
! Search Methods :




Using problem specific knowledge

w to aid searching

= Without incorporating Search
knowledge into searching, everywhere!!
one can have no bias (i.e. a v
preference) on the search .

space.

= Without a bias, one 1s forced
to look everywhere to find th
answer. Hence, the
complexity of uninformed
search 1s intractable.




Using problem specific knowledge
to aid searching

= With knowledge, one can search the state space as if he was
given “hints” when exploring a maze.
= Heuristic information in search = Hints

" Leads to dramatic speed up in efficiency.

Search only in

"
this subtree!! ,
p
| |

) |



More formally, why heuristic
&M functions work?

" In any search problem where there are at most b choices
at each node and a depth of d at the goal node, a naive
search algorithm would have to, in the worst case, search
around O(bd) nodes before finding a solution
(Exponential Time Complexity).

® Heuristics improve the efficiency of search algorithms
by reducing the effective branching factor from b to
(ideally) a low constant b* such that
= ] =<b*<<bDb



http://en.wikipedia.org/wiki/Branching_factor
http://en.wikipedia.org/wiki/Branching_factor

Heuristic Functions

A\

= A heuristic function is a function f(n) that gives an estimation on the
“cost” of getting from node n to the goal state — so that the node with
Fhe least cost among all possible choices can be selected for expansion
irst.

= Three approaches to defining 7.
= fmeasures the value of the current state (its “goodness”)

= fmeasures the estimated cost of getting to the goal from the current state:
. f(n) = h(n) where h(n) = an estimate of the cost to get from n to a goal

=  fmeasures the estimated cost of getting to the goal state from the current
state and the cost of the existing path to it. Often, in this case, we
decompose f;

. f(n) = g(n) + h(n) where g(n) = the cost to get to n (frogw initial state)



Approach 1: f Measures the Value of
the Current State

4

= Usually the case when solving optimization problems
* Finding a state such that the value of the metric fis optimized

= (Often, in these cases, fcould be a weighted sum of a set of
component values:

= N-Queens
= Example: the number of queens under attack ...

= Data mining

= Example: the “predictive-ness” (a.k.a. accuracy) of a rule discovered
6



Approach 2: f Measures the Cost to
the Goal

°

A state X'would be better than a state Y if the
estimated cost of getting from X to the goal is lower

than that of Y — because X would be closer to the
goal than Y

- &Puzzle 7 2 4 1 2

h1: The number of misplaced tiles
(squares with number).

h2: The sum of the distances of the tiles 8 I 3 (|| 1 6 ||| 7 || 8

from their goal positions. Syt State ol St



Approach 3: f measures the total cost of the
solution path (Admissible Heuristic
Functions)

® A heuristic function f(n) = g(n) + h(n) 1s admissible if /(n) never
overestimates the cost to reach the goal.

99, ¢

= Admissible heuristics are “optimistic”: “the cost is not that much ...”
" However, g(n) is the exact cost to reach node » from the initial state.

" Therefore, f(n) never over-estimate the true cost to reach the goal
state through node n.

" Theorem: A search 1s optimal 1f 2(n) 1s admissible.

= [.e. The search using 4(n) returns an optimal solution.

" Given h2(n) > hi(n) for all n, 1t’s always more efficient to use 22(n).

= K2 1s more realistic than 4/ (more informed), though both are optimistic.

8



Traditional informed search
strategies

" Greedy Best first search

= “Always chooses the successor node with the best f value”
where f(n) = h(n)

= We choose the one that is nearest to the final state among
all possible choices

= A* gearch

= Best first search using an “admissible” heuristic function f
that takes into account the current cost g

= Always returns the optimal solution path



*ﬁnformed Search Strategies

!

Best First Search




An implementation of Best
w First Search

function BEST-FIRST-SEARCH (problem, eval-fn)
returns a solution sequence, or failure

queuing-fn = a function that sorts nodes by eval-fn

return GENERIC-SEARCH (problem, gueuing-fn)

11



*ﬁnformed Search Strategies

Greedy Search
eval-fn: 1(n) = h(n)




Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T | OO M\ m| Ol O| @

0

f(n) = h (n) = straight-line distance heuristic
13



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T | OO M| m| Ol O| @

0

f(n) = h (n) = straight-line distance heuristic
14



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T Q| M M OO ®

0

f(n) = h (n) = straight-line distance heuristic
15



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | T MmO 6O @

0

f(n) = h (n) = straight-line distance heuristic
16



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | T | mMmM MmOl O @

0

f(n) = h (n) = straight-line distance heuristic
17



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T | OO M\ m| O O| @

0

f(n) = h (n) = straight-line distance heuristic
18



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | T OO\ M O O @

0

f(n) = h (n) = straight-line distance heuristic
19



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | T @M M| OlO| @

0

f(n) = h (n) = straight-line distance heuristic
20



Greedy Search

State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | T MmOl O| @

0

f(n) = h (n) = straight-line distance heuristic
21



Greedy Search

State Heuristic: h(n)

A 366

374

329

244

253

178

193

T/ O M| M| O O @

98

I 0

f(n) = h (n) = straight-line distance heuristic
22



Greedy Search: Tree Search

+

@ Start

23



Greedy Search: Tree Search

+

@ Start
[329] [374]
[253]

24



Greedy Search: Tree Search

+

@ Start
[329] % [374]
[253] E

[193] [178]

25




Greedy Search: Tree Search

+

@ Start
[329] % [374]
[253] E

[193] £ ) [178]
[253] g % [0]

Goal
26




Greedy Search: Tree Search

+

(a)

[253] E

) [178]

[193]
ORNS
[253] g X [0]

—_—

Goal

Path cost(A-E-F-I) = 253 + 178 + 0 = 431 .

dist(A-E-F-I) = 140 + 99 + 211 = 450



Greedy Search: Optimal ?

State Heuristic: h(n)
A 366
B 374
C 329
D 244
= F 178
%
H 211
101 I 0
Iv Goal f(n) = h (n) = straight-line distance heuristic

dist(A-E-G-H-I) =140+80+975101



Greedy Search: Complete ?

State Heuristic: h(n)

A 366
B 374

R C 250
D 244
E 253
F 178
G 193
H 98
I 0

f(n) = h (n) = straight-line distance heuristic
29



Greedy Search: Tree Search

+

@ Start

30



Greedy Search: Tree Search

+

@ Start
[250] [374]
[253]

31



Greedy Search: Tree Search

Start

(a)
[250] W [374] 9

[253]
[244]

32



Greedy Search: Tree Search

Start

(a)
[250] W [374] 9

[253]
[244] ( D
Infinite Branch'!
[250]

33



Greedy Search: Tree Search

Start

(a)
[250] (F [374] 9

[253]
[244] ( D

Infinite Branch !
[250] ( ¢

—

[244] é

s

34



Greedy Search: Tree Search

Start

(a)
[250] (F [374] 9

[253]
[244] ( D

Infinite Branch !
[250] ( ¢

—

[244] %

—_—
$

35



Greedy Search: Time and
Space Complexity ?

* Greedy search is not optimal.

- Greedy search is incomplete
without systematic checking
of repeated states.

- In the worst case, the Time
and Space Complexity of
Greedy Search are both
O(bm)

Where b is the branching factor and m the
maximum path length 36



anormed Search Strategies

!

A* Search

eval-fn: f{(n)=g(n)+h(n)




A* (A Star)

= Greedy Search minimizes a heuristic h(n) which 1s an
estimated cost from a node n to the goal state. Greedy
Search 1s efficient but it 1s not optimal nor complete.

® Uniform Cost Search minimizes the cost g(n) from the
initial state to n. UCS 1s optimal and complete but not
efficient.

" New Strategy: Combine Greedy Search and UCS to get an
efficient algorithm which 1s complete and optimal.

38



A* (A Star)

+

= A*uses a heuristic function which
combines g(n) and h(n): f(n) = g(n) + h(n)

" og(n) 1s the exact cost to reach node n from
the 1nitial state.

" h(n) 1s an estimation of the remaining cost
to reach the goal.

39



A* (A Star)

+

f(n) = g(n)+h(n)




A* Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T | OO M\ m| Ol O| @

0

Goal f(n) =g(n) + h(n)

g(n): is the exact cost to reach node n from thé]initial state.




+

A* Search: Tree Search

@ Start

42



A* Search: Tree Search

118 75

4471 G [393] 9 [449]
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A* Search: Tree Search

w @ Start

118 75
140
4471 =) [393] 9 [449]
80 99
[413] E @ [417]

44



A* Search: Tree Search

118 75

45



A* Search: Tree Search

w @ Start

118 75
140
4471 e . c [93;93] [449]
[413] ( G @ [417]

a7
415](H)

101
Goal [418]
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A* Search: Tree Search

w @ Start

118 75
140
4471 e . c [93993] [449]
[413] (G (F) 417)

[415] G—D Iv [450]
101
Goal [418]

47



A* Search: Tree Search

A Start
118 75
140
[447] E ) [393]
80 99
[413] ( G [417]
o
[415]( H 1) [450]
101
Goal \ |

48



A* Search: Tree Search

[415] | ) [450]

101
Goal

49



WA* with f() not Admissible

‘!

h() overestimates the
cost to reach the goal
state




A* Search: h not admissible !

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

138

— | T MmOl O| @

0

God(n) = g(n) + h (n) — (H-I) Overestimated

g(n): is the exact cost to reach node n from thg]initial state.




+

A* Search: Tree Search

@ Start

52



A* Search: Tree Search

118 75

4471 G [393] 9 [449]
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A* Search: Tree Search

w @ Start

118 75
140
4471 =) [393] 9 [449]
80 99
[413] E @ [417]
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A* Search: Tree Search

118 75

55



A* Search: Tree Search

w @ Start

118 75
140
4471 £ ) [393] [449]
80 99
[413] (G (F) 417)

o1
[455] @ Goal [450]
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A* Search: Tree Search

118 75

99
[473]{ [413] G (F) [417]
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A* Search: Tree Search

118 75

e ) [393] 5 ) [449]

99
[473]{ [413] G (F) [417]
7
[455] O Goal [450]
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A* Search: Tree Search

118 75

e ) [393] 5 ) [449]

99
[473]{ [413] G (F) [417]
[455]0 Goal L [450]
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A* Search: Tree Search

[455]( H Goal [450]

A* not optimal !!!

60



*WA* Algorithm
ﬂ

A* with systematic
checking for repeated
states ...




A* Algorithm

N =

o U

Search queue Q is empty.
Place the start state s in Q with f value h(s).
If Q is empty, return failure.
Take node n from Q with lowest f value.
(Keep Q sorted by f values and pick the first element).
If n is a goal node, stop and return solution.
Generate successors of node n.
For each successor n’ of n do:
a) Compute f(n") = g(n) + cost(n,n”) + h(n").
b) If n"is new (never generated before), add n’ to Q.

c) If node n’ is already in Q with a higher f value, replace it
with current f(n") and place it in sorted order in Q.

End for 62

A I~ A ~FAml D



A* Search: Analysis

- A¥is complete except if there is an infinity of
nodes with f < f(G).

- A* is optimal if heuristic A is admissible.

- Time complexity depends on the quality of
heuristic but is still exponential.

- For space complexity, A* keeps all nodes in
memory. A* has worst case O(bd) space
complexity, but an iterative deepening version
is possible (IDA*).

63



*ﬁnformed Search Strategies
W

[terative Deepening A*



Iterative Deepening A*:IDA*

+

= Use f(N) = g(N) + h(N) with admissible
and consistent h

= Fach iteration is depth-first with cutoff
on the value of f of expanded nodes

65



+

Consistent Heuristic

= The admissible heuristic h is consistent (or

satisfies the monotone restriction) if for every
node N and every successor N’ of N:

h(N) c(N,N") + h(N) C‘N’Nf

(triangular inequality) h(N’

= A consistent heuristic is admissible.

66



IDA* Algorithm

In the first iteration, we determine a “f-cost limit” — cut-off value

f(n0) = g(n0) + h(n0) = h(n0), where nO0 is the start node.

We expand nodes using the depth-first algorithm and backtrack
whenever f(n) for an expanded node n exceeds the cut-off value.

If this search does not succeed, determine the lowest f-value
among the nodes that were visited but not expanded.

Use this f-value as the new limit value — cut-off value and do
another depth-first search.

Repeat this procedure until a goal node is found.
67



8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4 B
Cutoff=4

68



8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

/70



8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

/1



8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

4 B
Cutoff=5
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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8-Puzzle

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles
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When to Use Search
&W Techniques

= The search space is small, and
= There are no other available techniques, or

= It is not worth the effort to develop a more
efficient technique

= The search space is large, and
= There is no other available techniques, and
" There exist "good” heuristics

80



Conclusions

-

® Frustration with uninformed search led to the 1dea
of using domain specific knowledge in a search so
that one can intelligently explore only the relevant
part of the search space that has a good chance of
containing the goal state. These new techniques
are called informed (heuristic) search strategies.

" Even though heuristics improve the performance
of informed search algorithms, they are still time
consuming especially for large size instances.
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Admissible Heuristic

In computer science, specifically in algorithms related to pathfinding, a
heuristic function is said to be admissible if it never overestimates the
cost of reaching the godl, i.e. the cost it estimates to reach the goal is not
higher than the lowest possible cost from the current point in the path.

An admissible heuristic is used to estimate the cost of reaching the goal
state in an informed search algorithm. In order for a heuristic to be
admissible to the search problem, the estimated cost must always be
lower than or equal to the actual cost of reaching the goal state. The
search agorithm uses the admissible heuristic to find an estimated
optimal path to the goal state from the current node. For example, in A*

search the evaluation function (where Il is the current node) is:

f(n) =g(n) + h(n)

where

f(n) = the evaluation function.

g(n) = the cost from the start node to the current node
N(n) = estimated cost from current node to goal.

N(N) is calculated using the heuristic function. With a non-admissible
heuristic, the A* algorithm could overlook the optimal solution to a

search problem due to an overestimation in f(n).

Formulation
Nisanode
N isaheuristic
N(N) is cost indicated by h to reach agoal from

n* (N) isthe actual cost to reach agoal from
N(n) isadmissibleif, for al n

h(n) <= h*(n)






Heuristic Search Algorithm
Best First and Branch and
Bound Algorithms



Best First Search

Uniform Cost Search is a special case of the best first search algorithm. The algorithm
maintains a priority queue of nodes to be explored. A cost function f(n) is applied to each
node. The nodes are put in OPEN in the order of their f values. Nodes with smaller f(n)
values are expanded earlier. The generic best first search algorithm 1s outlined below.

Let fringe be a prionty queve contaning the mitial state
Loop
if fringe s empty refurn failure
Node € remove-first (fringe)
if Node 15 a goal
then refurn the path from mitial state to Node
else generate all successors of Node, and
put the newly generated nodes into fringe
according fo ther  values
End Loop




Concept

Step 1: Traverse the root node

Step 2: Traverse any neighbour of the root node, that is maintaining a least distance
from the root node and insert them in ascending order into the queue.

Step 3: Traverse any neighbour of neighbour of the root node, that is maintaining a
least distance from the root node and insert them in ascending order into the queue

Step 4: This process will continue until we are getting the goal node
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Step 1:

Consider the node A as our root node. So the first element of the queue is A whish is not our
goal node, so remove it from the queue and find its neighbour that are to inserted in ascending
order.

A

Step 2:

The neighbours of A are B and C. They will be inserted into the queue in ascending order.
BC A(Expanded Node)

Step 3:

Now B is on the FRONT end of the queue. So calculate the neaghbours of B that are
maintaining a least distance from the roof.



Step 4:

Now the node F is on the FRONT end of the queue. But as it has no further children, so remove it
from the queue and proceed further.

EDC F (Expanded Node)
Step 5:

Now E is the FRONT end. So the children of E are J and K. Insert them into the queue in
ascending order.

KJDC E(Expanded Node)

Step 6:

Now K is on the FRONT end and as it has no further children, so remove it and proceed further
IJDC K(Expanded Node)

Step7:

Also, J has no corresponding children. So remove it and proceed further.

DC J(Expanded Node)

Step 8:

Now D is on the FRONT end and calculates the children of D and put it51nto the queue.



Step 10:

Now C 1s the FRONT node .So calculate the neighbours of C that are to be inserted in
ascending order into the queue.

GH C(Expanded Node)
Step 11:

Now remove G from the queue and calculate its neighbour that is to insert in ascending
order into the queue.

MLH G(Expanded Node)
Step12:
Now M is the FRONT node of the queue which is our goal node. So stop here and exit.

LH M(Expanded Node)



Sometimes, it covers more distance than

It 1s more efficient than that of our consideration.

BFS and DFS.

Time complexity of Best first
search 1s much less than Breadth
first search.

The Best first search allows us

to switch between paths by
gaining the benefits of both
breadth first and depth first
search. Because, depth first is
good because a solution can be
found without computing all
nodes and Breadth first search is
good because it does not get
trapped in dead ends.



Branch and Bound

Branch and Bound is an algorithmic technique which finds the optimal solution by
keeping the best solution found so far.

If partial solution can’t improve on the best it is abandoned, by this method the
number of nodes which are explored can also be reduced.

It also deals with the optimization problems over a search that can be presented as
the leaves of the search tree.

The usual technique for eliminating the sub trees from the search tree is called
pruning.

For Branch and Bound algorithm we will use stack data structure.



Concept

Step 1: Traverse the root node.

Step 2: Traverse any neighbour of the root node that is maintaining least distance from
the root node.

Step 3: Traverse any neighbour of the neighbour of the root node that is maintaining
least distance from

the root node.

Step 4: This process will continue until we are getting the goal node.



Algorithm

Step 1: PUSH the root node into the stack.
Step 2: If stack 1s empty, then stop and return failure.
Step 3: If the top node of the stack is a goal node, then stop and return success.

Step 4: Else POP the node from the stack. Process it and find all its successors. Find
out the path containing all its successors as well as predecessors and then PUSH the
successors which are belonging to the minimum or shortest path.

Step 5: Go to step 2.
Step 6: Exit.

10



Step 1:

Example

Consider the node A as our root node. Find its successors
1.e. B, C, F. Calculate the distance from the root and PUSH

them according to least distance.

A

B: 0+5 =5 (The cost of A is 0 as it 1s the starting node)

F: 0+9=9
C.0+7=17

Here B (5) is the least distance.

Step 2:

Now the stack will be

C F B(Top)

A(Expanded)

As B is on the top of the stack so calculate the neighbours

of B.

(2
/\ix
(s )
S
P
I C |
4I"x__..-/



Step 3:

As the top of the stack 1s D. So calculate neighbours of D.
C F D(Top) B(Expanded)

C: 0+5+4+8 =17

F: 0+5+4+3 =12

The least distance is F from D and it is our goal node. So stop and return success.

Step 4:

C F(Top) D(Expanded)

Hence the searching path will be A-B -D-F

12



Advantages/Disadvantages

Advantages:

As 1t finds the minimum path instead of finding the minimum successor so there
should not be any repetition.

The time complexity is less compared to other algorithms.

Disadvantages:

The load balancing aspects for Branch and Bound algorithm make it parallelization
difficult.

The Branch and Bound algorithm 1s limited to small size network. In the problem
of large networks, where the solution search space grows exponentially with the
scale of the network, the approach becomes relatively prohibitive.

13
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Local Search and
Optimization



Outline

* Local search techniques and
optimization
— Hill-climbing
— Gradient methods
- Simulated annealing
— Issues with local search



Local search and optimization

* Previously: systematic exploration of search
space.
— Backtrack search
— Can solve n-queen problems for n = 200

* Different algorithms can be used
— Local search

— Can solve n-queen for n = 1,000,000




Local search and optimization

* Local search

— Keep track of single current state
— Move only to neighboring states
— Ignore paths

* Advantages:
— Use very little memory

— Can often find reasonable solutions in large or infinite
(continuous) state spaces.

* "“Pure optimization” problems
— All states have an objective function

— Goal is to find state with max (or min) objective
value

— Does not quite fit into CSP (satisfaction problem)
formulation

— Local search can do quite well on these problems.



Generated and Test

* Algorithm
1. Generate a (potential goal) state:
— Particular point in the problem space, or
— A path from a start state
2. Test if it is a goal state
— Stop if positive
— go to step 1 otherwise
* Systematic or Heuristic?
—. It depends on “Generate”



Local search algorithms

In many problems, the path to the goal is
irrelevant; the goal state itself is the solution

State space = set of "complete" configurations

Find configuration satisfying constraints, e.g., n-
queens

In such cases, we can use local search algorithms

keep a single "current" state, try to improve it



Hill Climbing

* Simple Hill Climbing
— expand the current node

— evaluate its children one by one (using the
heuristic evaluation function)

— choose the FIRST node with a better value

* Steepest Ascend Hill Climbing
— expand the current node

— Evaluate all its children (by the heuristic
evaluation function)

— choose the BEST node with the best value



Hill-climbing

* Steepest Ascend

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current + MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor+ a highest-valued successor of current
if VALUE[neighbor|] < VALUE[current] then return STATE[current]
current ¢ neighbor




“Landscape” of search for max value
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Hill-climbing search

* "“a loop that continuously moves in the direction of increasing
value”
— terminates when a peak is reached
— Aka greedy local search

* Value can be either
— Objective function value
— Heuristic function value (minimized)

* Hill climbing does not look ahead of the immediate neighbors
of the current state.

* Can randomly choose among the set of best successors, if
multiple have the best value

* Characterized as “trying to find the top of Mount Everest while
in a thick fog”



Hill climbing and local maxima

* When local maxima exist, hill climbing is suboptimal

* Simple (often effective) solution
— Multiple random restarts
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Hill-climbing example

* 8-queens problem, complete-state formulation
— All 8 queens on the board in some configuration

* Successor function:

— move a single queen to another square in the same
column.

* Example of a heuristic function hA(n):

— the number of pairs of queens that are attacking
each other (directly or indirectly)

- (so we want to minimize this)



Hill Climbing: Disadvantages

Local maximum
A state that is better than all of its neighbours, but not
better than some other states far away.

13



Hill Climbing: Disadvantages

Plateau
A flat area of the search space in which all neighbouring
states have the same value.

14



Hill Climbing: Disadvantages

Ridge

The orientation of the high region, compared to the set
of available moves, makes it impossible to climb up.
However, two moves executed serially may increase

the height.

(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of 1
maxima that are not directly connected to each other. From each local maximum, all &

i

Figure4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of%

available actions point downhill.



Hill Climbing: Disadvantages

Ways Out

* Backtrack to some earlier node and try going in a different

direction.
* Make a big jump to try to get in a new section.

* Moving in several directions at once.

16



Performance of hill-climbing on 8-queens

* Randomly generated 8-queens starting states...
* 14% the time it solves the problem

* 86% of the time it get stuck at a local
minimum

* However...
— Takes only 4 steps on average when it succeeds
— And 3 on average when it gets stuck
— (for a state space with ~17 million states)



Possible solution...sideways moves

* If no downhill (uphill) moves, allow sideways
moves in hope that algorithm can escape

— Need to place a limit on the possible number of
sideways moves to avoid infinite loops

* For 8-queens
— Now allow sideways moves with a limit of 100

— Raises percentage of problem instances solved from
14 to 94%

— However...
* 21 steps for every successful solution
* 64 for each failure



Hill-climbing variations

* Stochastic hill-climbing

— Random selection among the uphill moves.

— The selection probability can vary with the steepness
of the uphill move.

* First-choice hill-climbing

— stochastic hill climbing by generating successors
randomly until a better one is found

— Useful when there are a very large number of
SuCcessors

* Random-restart hill-climbing

— Tries to avoid getting stuck in local maxima.



Hill-climbing with random restarts

* Different variations

— For each restart: run until termination v. run for a
fixed time

— Run a fixed number of restarts or run indefinitely

* Analysis
— Say each search has probability p of success

* E.g., for 8-queens, p = 0.14 with no sideways
moves

— Expected number of restarts?
— Expected number of steps taken?



Local beam search

* Keep track of k states instead of one
— Initially: k randomly selected states
— Next: determine all successors of k states
— If any of successors is goal finished
— Else select k best from successors and repeat.

* Major difference with random-restart search
— Information is shared among k search threads.

* Can suffer from lack of diversity.
— Stochastic beam search
* choose k successors proportional to state quality.



Search using Simulated Annealing

* Simulated Annealing = hill-climbing with non-deterministic
search

* Basic ideas:

like hill-climbing identify the quality of the local
improvements

instead of picking the best move, pick one randomly
say the change in objective function is o
if & is positive, then move to that state
otherwise:
* move to this state with probability proportional to &

* thus: worse moves (very large negative d) are executed
less often

however, there is always a chance of escaping from local
maxima

over time, make it less likely to accept locally bad moves

(Can also make the size of the move random as well, i.e.,
allow “large” steps in state space)



Physical Interpretation of Simulated Annealing

* Annealing = physical process of cooling
a liquid or metal until particles achieve a
certain frozen crystal state

* simulated annealing:
— free variables are like particles
— seek “low energy” (high quality)
configuration

— get this by slowly reducing
temperature T, which particles move
around randomly



Simulated annealing

function SIMULATED-ANNEALING( problem, schedule) return a
solution state

input: problem, a problem
schedule, a mapping from time to temperature
local variables: current, a node.
next, a node.

T, a “temperature” controlling the probability of
downward steps

current MAKE-NODE(INITIAL-STATE[problem])
fort 1tooodo

T  schedulel[t]

if T = 0 then return current

next a randomly selected successor of current

AE VALUE[next] - VALUE[current]

if AE > 0 then current  next

else current  next only with probability eAE /T



More Details on Simulated Annealing

— Lets say there are 3 moves available, with changes in the
objective function of d1 = -0.1, d2 = 0.5, d3 = -5. (Let T
=1).

— pick a move randomly:

* if d2 is picked, move there.
* if d1 or d3 are picked, probability of move = exp(d/T)
* move 1: probl = exp(-0.1) = 0.9,
- i.e., 90% of the time we will accept this move
* move 3: prob3 = exp(-5) = 0.05
- i.e., 5% of the time we will accept this move

- T = “temperature” parameter
* high T => probability of “locally bad” move is higher
* low T => probability of “locally bad” move is lower
* typically, T is decreased as the algorithm runs longer
- i.e., there is a “temperature schedule”



Simulated Annealing in Practice

— method proposed in 1983 by IBM researchers for
solving VLSI layout problems (Kirkpatrick et al,
Science, 220:671-680, 1983).

* theoretically will always find the global optimum
(the best solution)

— useful for some problems, but can be very slow
— slowness comes about because T must be
decreased very gradually to retain optimality
* In practice how do we decide the rate at which to
decrease T? (this is a practical problem with this

method)



Genetic algorithms

Different approach to other search algorithms
* A successor state is generated by combining two parent states

A state is represented as a string over a finite alphabet (e.g. binary)
— 8-queens

* State = position of 8 queens each in a column
=> 8 x log(8) bits = 24 bits (for binary representation)

Start with kK randomly generated states (population)

Evaluation function (fithess function).
Higher values for better states.

- Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens

Produce the next generation of states by “simulated evolution”
— Random selection
— Crossover
— Random mutation



Genetic algorithms
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Genetic algorithms

Has the effect of “jumping” to a completely different new
part of the search space (quite non-local)




Genetic algorithm pseudocode

function GENETIC_ALGORITHM( population, FITNESS-FN) return an individual
input: population, a set of individuals
FITNESS-FN, a function which determines the quality of the individual
repeat
new_population empty set
loop for i from 1 to SIZE(population) do

x RANDOM_SELECTION(population, FITNESS_FN)
y  RANDOM_SELECTION(population, FITNESS_FN)

child  REPRODUCE(x,y)
if (small random probability) then child MUTATE(child )
add child to new_population
population new_population
until some individual is fit enough or enough time has elapsed
return the best individual



Comments on genetic algorithms

* Positive points
— Random exploration can find solutions that local search can’t
* (via crossover primarily)
— Appealing connection to human evolution
* E.g., see related area of genetic programming

* Negative points
— Large number of “tunable” parameters
* Difficult to replicate performance from one problem to another

— Lack of good empirical studies comparing to simpler methods

— Useful on some (small?) set of problems but no convincing
evidence that GAs are better than hill-climbing w/random restarts
in general



Adversarial Search and Game-Playing



Typical assumptions

* Two agents whose actions alternate

* Utility values for each agent are the opposite of the other
— creates the adversarial situation

* Fully observable environments

* In game theory terms:
— “Deterministic, turn-taking, zero-sum games of perfect information”

* Can generalize to stochastic games, multiple players, non zero-
sum, etc



Search versus Games

* Search - no adversary
— Solution is (heuristic) method for finding goal

— Heuristics and CSP (Constraints Satisfaction Problem) techniques can find
optimal solution

— Evaluation function: estimate of cost from start to goal through given node
— Examples: path planning, scheduling activities

* Games - adversary
— Solution is strategy (strategy specifies move for every possible opponent
reply).
— Time limits force an approximate solution
— Evaluation function: evaluate “goodness” of
game position

— Examples: chess, checkers, Othello, backgammon



Game Setup

* Two players: MAX and MIN

*  MAX moves first and they take turns until the game is over
— Winner gets award, loser gets penalty.

* Games as search:
— Initial state: e.g. board configuration of chess
— Successor function: list of (move,state) pairs specifying legal moves.
— Terminal test: Is the game finished?

— Utility function: Gives numerical value of terminal states. E.g. win (+1), lose
(-1) and draw (0) in tic-tac-toe or chess

* MAX uses search tree to determine next move.



Size of search trees

b = branching factor
* d = number of moves by both players
* Search tree is O(bd)

* Chess
- b~ 35
- D ~100
- search treeis ~ 10 154 (1)

- completely impractical to search this

* Game-playing emphasizes being able to make optimal decisions in a
finite amount of time
- Somewhat realistic as a model of a real-world agent
- Even if games themselves are artificial



Partial Game Tree for Tic-Tac-Toe

MAX (X)

X X Tx
MIN (0) X X

x[0 x| (o] [x[
MAX (X) )

x[o[x] [x]o x[0
MIN (0) X X

x[o[x]| [X[o[x] [x[o[x
TERMINAL [ [0]x| [O[0[X X

0 X|x[0| [X[o[o

Utility -1 0 1



Game tree (2-player, deterministic, turns)

MAX (X)
X X Tx
MIN (O) X X X
X X
x[o x| o] [x]
MAX (X) o
xlo/x| [x[o X0
MIN (O) X X
xlox| [x[o[x] [x[o
TERMINAL o/x| [olo[x X
o X xo| [Xolo
Utility 1 a 11

How do we search this tree to find the optimal move?



Minimax strategy

* Find the optimal strategy for MAX assuming an infallible MIN
opponent

— Need to compute this all the down the tree
* Assumption: Both players play optimally!

* Given a game tree, the optimal strategy can be determined by
using the minimax value of each node:

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs successors(n) MINIMAX-VALUE(s) If nis a max node
mins successors(n) MINIMAX-VALUE(s) If n is a min node



Two-Ply Game Tree

MAX

MIN




Two-Ply Game Tree

MAX

MIN




Two-Ply Game Tree

MAX

MIN




Two-Ply Game Tree

Minimax maximizes the utility for the worst-case outcome for max

The minimax decision 3
MAX

A

MIN




What if MIN does not play optimally?

* Definition of optimal play for MAX assumes MIN plays optimally:
— maximizes worst-case outcome for MAX

* But if MIN does not play optimally, MAX will do even better



Minimax Algorithm

* Complete depth-first exploration of the game tree

* Assumptions:
— Max depth = d, b legal moves at each point
- E.g., Chess: d ~ 100, b ~35

Criterion Minimax

Time O(bm)

Space O(bm)




Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) returns an action
inputs: sfate, current state in game

v  MAX-VALUE (state)
return the action in SUCCESSORS(state) with value vy

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
A% o0
for a,s in SUCCESSORS(state) do
v MAX(v,MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY (state)
A% 0 @)
for a,s in SUCCESSORS(state) do
v MIN(v,MAX-VALUE(s))
return v




Multiplayer games

* Games allow more than two players

* Single minimax values become vectors

to move

{1,2.6) (4,2.3) (6. 1.2y (7.4-1) (5-1~-1) (=L.5.2 (7.7-1) (5,4.5)



Aspects of multiplayer games

* Previous slide (standard minimax analysis) assumes that each
player operates to maximize only their own utility

* In practice, players make alliances
- E.g, C strong, A and B both weak
— May be best for A and B to attack C rather than each other

* If game is not zero-sum (i.e., utility(A) = - utility(B) then
alliances can be useful even with 2 players
- e.g., both cooperate to maximum the sum of the utilities



Practical problem with minimax search

*  Number of game states is exponential in the number of moves.

— Solution: Do not examine every node
=> pruning

* Remove branches that do not influence final decision

* Revisit example ...



Alpha-beta pruning

* It is possible to compute the correct minimax decision without
looking at every node in the game tree.

* Alpha-beta pruning allows to eliminate large parts of the tree
from consideration, without influencing the final decision.

D



Alpha-beta pruning
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Alpha-beta pruning
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choose C. .

* Therefore, there is no point in looking at
the other successors of C.
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Alpha-beta pruning
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alternative (i.e., 3), so D’s other successors
are explored.



Alpha-beta pruning
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* TheSecolfd sutcesor of D is Worth 3, so
the exploration continues.



Alpha-beta pruning
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Alpha-beta pruning

* Alpha-beta pruning gets its name from two parameters.
— They describe bounds on the values that appear anywhere along
the path under consideration:
* a = the value of the best (i.e., highest value) choice found so
far along the path for MAX
* B = the value of the best (i.e., lowest value) choice found so
far along the path for MIN



Alpha-beta pruning

Alpha-beta search updates the values of g and B as it goes
along.

It prunes the remaining branches at a node (i.e., terminates
the recursive call)

— as soon as the value of the current node is known to be worse
than the current g or 8 value for MAX or MIN, respectively.



The alpha-beta search algorithm

fnlu:tmn ALPHA- BETA—SEARCH{SMIE} returns an action

DRS(state) with value v

function| MAX-VALUE(state, c , returns a utility value
if TE 5 en return UTILITY (state)

Vs =0

for a,5 in SUCCESSORS(sfafe) do
v =— MAX(v,MIN-VALUE(s, «, £))
if v = S then return v
o — MAX(a ,v)

return v

fnnl:tiud MIN-VALUE(state, c, ﬁ]lrehu'ns a utility value

if TERMINAL-TEST(state) then return UTILITY (state)

v = +aoo

for a,s in SUCCESSORS(sfafe) do
v =— MIN(v,MAX-VALUE(s, o, B8))
if v = o then return v
B < MIN(S ,v)

return v




General alpha-beta pruning

* (Consider a node n somewhere
in the tree

* If player has a better choice at
— Parent node of n
— Or any choice point further up

* n will never be reached in
actual play.

* Hence when enough is known
about n, it can be pruned.

Plaver

Upponent

Player

Upponent



Alpha-beta Algorithm

* Depth first search - only considers nodes along a single path
at any time

a = highest-value choice we have found at any choice point
along the path for MAX

B = lowest-value choice we have found at any choice point along
the path for MIN

* update values of a and B during search and prunes remaining
branches as soon as the value is known to be worse than the
current a or B value for MAX or MIN



The Algorithm

* Visit the nodes in a depth-first manner
* Maintain bounds on nodes.
* A bound may change if one of its children obtains a unique value.

* A bound becomes a unique value when all its children have been checked
or pruned.

*  When a bound changes into a tighter bound or a unique value, it may
become inconsistent with its parent.

*  When an inconsistency occurs, prune the sub-tree by cutting the edge
between the inconsistent bounds/values.

- This is like propagating changes bottom-up in the tree.



Effectiveness of Alpha-Beta Search

* Worst-Case

— branches are ordered so that no pruning takes place. In this case
alpha-beta gives no improvement over exhaustive search

* Best-Case

— each player’s best move is the left-most alternative (i.e., evaluated
first)

— in practice, performance is closer to best rather than worst-case

* In practice often get O(b(d/2)) rather than O(bd)
— this is the same as having a branching factor of sqrt(b),
* since (sqrt(b))d = b(d/2)
* i.e., we have effectively gone from b to square root of b
- e.g., inchessgofromb~ 35 to b~ 6
* this permits much deeper search in the same amount of time



Final Comments about Alpha-Beta Pruning

Pruning does not affect final results

Entire subtrees can be pruned.

Good move ordering improves effectiveness of pruning

Repeated states are again possible.
— Store them in memory = transposition table



Example

-which nodes can be pruned?



Practical Implementation

How do we make these ideas practical in real game trees?

Standard approach:
* cutoff test: (where do we stop descending the tree)
— depth limit
— better: iterative deepening
— cutoff only when no big changes are expected to occur next (quiescence search).

* evaluation function

— When the search is cut off, we evaluate the current state
by estimating its utility. This estimate if captured by the

evaluation function.



Static (Heuristic) Evaluation Functions

An Evaluation Function:
— estimates how good the current board configuration is for a player.

— Typically, one figures how good it is for the player, and how good it is for the
opponent, and subtracts the opponents score from the players

— Othello: Number of white pieces - Number of black pieces
— Chess: Value of all white pieces - Value of all black pieces

Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

If the board evaluation is X for a player, it's -X for the opponent

Example:
— Evaluating chess boards,
— Checkers
— Tic-tac-toe



Evaluation functions

Black to move White to move

White slightly better Black winning
For chess, typically linear weighted sum of features
Eval(s) = wifi(s) +wafa(s) + ... + wnfa(s)

e.g., wi; = 9 with
fi(s) = (number of white queens) — (number of black queens), etc.

Chapter 5, Sections 1-5



Iterative (Progressive) Deepening

* In real games, there is usually a time limit T on making a
move

* How do we take this into account?

— using alpha-beta we cannot use “partial” results with any
confidence unless the full breadth of the tree has been searched

— So, we could be conservative and set a conservative depth-limit
which guarantees that we will find a move in time < T

* disadvantage is that we may finish early, could do more search

* In practice, iterative deepening search (IDS) is used
— IDS runs depth-first search with an increasing depth-limit

— when the clock runs out we use the solution found at the previous
depth limit



Heuristics and Game Tree Search

* The Horizon Effect

sometimes there’s a major “effect” (such as a piece being
captured) which is just “below” the depth to which the tree has
been expanded

the computer cannot see that this major event could happen
it has a “limited horizon”

there are heuristics to try to follow certain branches more deeply to
detect to such important events

this helps to avoid catastrophic losses due to “short-sightedness”

* Heuristics for Tree Exploration

it may be better to explore some branches more deeply in the
allotted time

various heuristics exist to identify “promising” branches



The State of Play

Checkers:

— Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994.

Chess:

— Deep Blue defeated human world champion Garry Kasparov in a
six-game match in 1997.

Othello:

— human champions refuse to compete against computers: they are
too good.

Go:

— human champions refuse to compete against computers: they are
too bad

- b > 300 (!

See (e.qg.) http://www.cs.ualberta.ca/~games/ for more information


http://www.cs.ualberta.ca/~games/
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Deep Blue

1957: Herbert Simon
— “within 10 years a computer will beat the world chess champion’

(4

1997: Deep Blue beats Kasparov

Parallel machine with 30 processors for “software” and 480
VLSI processors for “hardware search”

Searched 126 million nodes per second on average
— Generated up to 30 billion positions per move
— Reached depth 14 routinely

Uses iterative-deepening alpha-beta search with
transpositioning
— Can explore beyond depth-limit for interesting moves



Chance Games.

Backgammon

&
aaallé &

your element of
chance

25 24 23 22 21 20 19 18 17 16 15 14 13



Expected Minimax

MAX

v = Z P(n) xMinimax(n)

chance nodes
\»
3=05%x4+05 x2 CHANCE 3

0.5

Interleave chance nodes N 2
with min/max nodes o

Again, the tree is constructed
bottom-up



Summary

Game playing can be effectively modeled as a search problem
Game trees represent alternate computer/opponent moves

Evaluation functions estimate the quality of a given board
configuration for the Max player.

Minimax is a procedure which chooses moves by assuming that
the opponent will always choose the move which is best for
them

Alpha-Beta is a procedure which can prune large parts of the
search tree and allow search to go deeper

For many well-known games, computer algorithms based on
heuristic search match or out-perform human world experts.

Reading:R&N Chapter 6.



	页 1
	Outline
	Example: The 8-puzzle
	Example: The 8-puzzle
	Example: robotic assembly
	Tree search algorithms
	Tree search example
	Tree search example
	Tree search example
	Implementation: general tree search
	Implementation: states vs. nodes
	Search strategies
	Uninformed search strategies
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Properties of breadth-first search
	Uniform-cost search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Properties of depth-first search
	Depth-limited search
	Iterative deepening search
	Iterative deepening search l =0
	Iterative deepening search l =1
	Iterative deepening search l =2
	Iterative deepening search l =3
	Iterative deepening search
	Properties of iterative deepening search
	Summary of algorithms
	页 1
	Uninformed Search
	Breadth First Search
	Concept
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	Properties of BFS
	页 13
	Depth First Search
	Concept
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	Properties of DFS
	页 23
	Difference between BFS and DFS
	Uniform Cost Search
	Algorithm- Uniform Cost Search
	Properties of UCS
	页 1
	Building Goal-Based Agents
	What is the goal to be achieved?
	What are the actions?
	Actions
	Representing states
	Representing states
	Closed World Assumption
	Some example problems
	8-Puzzle
	8 puzzle
	A portion of the state space of a 8-Puzzle problem
	The 8-Queens Problem
	Missionaries and Cannibals
	Missionaries and Cannibals Solution
	Cryptarithmetic
	Remove 5 Sticks
	Traveling Salesman Problem
	Formalizing Search in a State Space
	页 20
	页 21
	A General State-Space Search Algorithm
	A General State-Space Search Algorithm
	Some Issues
	Evaluating Search Strategies
	Uninformed vs. Informed Search
	Breadth-First
	Breadth-First
	Example Illustrating Uninformed Search Strategies
	Breadth-First Search
	CLOSED List: the search tree connected by backpointers
	Depth-First (DFS)
	Depth-First Search
	Uniform-Cost (UCS)
	Uniform-Cost Search
	Uniform-Cost (UCS)
	Depth-First Iterative Deepening (DFID)
	Depth-First Iterative Deepening (DFID)
	Depth-First Iterative Deepening
	页 40
	Bi-directional search
	Comparing Search Strategies
	When to use what
	页 1
	Depth Limited Search
	Depth First Iterative deepening Search (DFID)
	Iterative deepening search
	Iterative deepening search l =0
	Iterative deepening search l =1
	Iterative deepening search l =2
	Iterative deepening search l =3
	Iterative deepening search
	Properties of iterative deepening search
	Comparing Uninformed Search Strategy
	页 1
	Using problem specific knowledge to aid searching
	Using problem specific knowledge to aid searching
	More formally, why heuristic functions work?
	Heuristic Functions
	Approach 1: f Measures the Value of the Current State
	Approach 2: f Measures the Cost to the Goal
	页 8
	Traditional informed search strategies
	页 10
	An implementation of Best First Search
	页 12
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Optimal ?
	Greedy Search: Complete ?
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Tree Search
	Greedy Search: Time and Space Complexity ?
	页 37
	A* (A Star)
	A* (A Star)
	A* (A Star)
	A* Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	页 50
	A* Search: h not admissible !
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	A* Search: Tree Search
	页 61
	A* Algorithm
	A* Search: Analysis
	页 64
	Iterative Deepening A*:IDA*
	Consistent Heuristic
	IDA* Algorithm
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	8-Puzzle
	When to Use Search Techniques
	Conclusions
	页 1
	Best First Search
	Concept
	Example
	页 5
	页 6
	页 7
	Branch and Bound
	Concept
	Algorithm
	Example
	页 12
	Advantages/Disadvantages
	页 14
	页 1
	Outline
	Local search and optimization
	Local search and optimization
	Generated and Test
	Local search algorithms
	Hill Climbing
	Hill-climbing
	“Landscape” of search for max value
	Hill-climbing search
	Hill climbing and local maxima
	Hill-climbing example
	Hill Climbing: Disadvantages
	Hill Climbing: Disadvantages
	Hill Climbing: Disadvantages
	Hill Climbing: Disadvantages
	Performance of hill-climbing on 8-queens
	Possible solution…sideways moves
	Hill-climbing variations
	Hill-climbing with random restarts
	Local beam search
	Search using Simulated Annealing
	Physical Interpretation of Simulated Annealing
	Simulated annealing
	More Details on Simulated Annealing
	Simulated Annealing in Practice
	Genetic algorithms
	Genetic algorithms
	Genetic algorithms
	Genetic algorithm pseudocode
	Comments on genetic algorithms
	页 1
	Typical assumptions
	Search versus Games
	Game Setup
	Size of search trees
	Partial Game Tree for Tic-Tac-Toe
	Game tree (2-player, deterministic, turns)
	Minimax strategy
	Two-Ply Game Tree
	Two-Ply Game Tree
	Two-Ply Game Tree
	Two-Ply Game Tree
	What if MIN does not play optimally?
	Minimax Algorithm
	Pseudocode for Minimax Algorithm
	Multiplayer games
	Aspects of multiplayer games
	Practical problem with minimax search
	Alpha-beta pruning
	Alpha-beta pruning
	Alpha-beta pruning
	Alpha-beta pruning
	Alpha-beta pruning
	Alpha-beta pruning
	Alpha-beta pruning
	Alpha-beta pruning
	The alpha-beta search algorithm
	General alpha-beta pruning
	Alpha-beta Algorithm
	The Algorithm
	Effectiveness of Alpha-Beta Search
	Final Comments about Alpha-Beta Pruning
	Example
	Practical Implementation
	Static (Heuristic) Evaluation Functions
	页 36
	Iterative (Progressive) Deepening
	Heuristics and Game Tree Search
	The State of Play
	页 40
	Deep Blue
	Chance Games.
	Expected Minimax
	Summary

